Plants for Mars - scientists explore viability

Plants will play a critical role in the survival of human beings on long-duration space missions, such as a mission to Mars, a new paper has found.

But, as a paper published in Botany Letters shows, many challenges need to be addressed if astronauts are to successfully grow enough food on board spacecraft and on other planets.

Lucie Poulet and colleagues from the University of Clermont-Ferrand, Auvergne outline in their review that while healthy plants can be grown in space, the long-term effects of the space environment on plant growth and reproduction are not yet well known.

Since the 1960s, experiments conducted in space stations and research rockets have shown that plants can grow normally in microgravity provided factors such as confinement, lack of ventilation and elevated radiation levels are taken into account. 

However, microgravity can reduce cell growth, alter gene expression and change the pattern of root growth – all aspects which critically affect plant cultivation in space.

Seeds produced in orbit also seem to have different composition and developmental stages from seeds grown on Earth.  As well as affecting the performance and nutritional content of space seeds, this could damage the flavour of plants produced in space, which might become a problem for crews reliant on plant-based diets during long space missions.

While there appears to be no major obstacle to plant growth in space, large-scale tests for food production in reduced gravity are still lacking, and a number of viable technologies for space agriculture need to be developed.

These include efficient watering and nutrient-delivery systems, precise atmospheric controls for temperature, humidity and air composition, and low-energy lighting which could include sun collection systems that take advantage of sunlight on the surface of planets and moons.

Selecting the right crops to grow in space is also essential.  Given the limited amount of room available on board a spacecraft, plants with reduced size but high yields need to be developed: for example, dwarf varieties of wheat, cherry tomato, rice, pepper, soybean and pea have been successfully grown in orbit and in simulated planetary habitats.

Lucie Poulet said: "Challenges remain in terms of nutrient delivery, lighting and ventilation, but also in the choice of plant species and traits to favour.  Additionally, significant effort must be made on mechanistic modelling of plant growth to reach a more thorough understanding of the intricate physical, biochemical and morphological phenomena involved if we are to accurately control and predict plant growth and development in a space environment."

Plants will play a critical role in the survival of human beings on long-duration space missions, such as a mission to Mars.  However, as a paper published in Botany Letters shows, many challenges need to be addressed if astronauts are to successfully grow enough food on board spacecraft and on other planets.

Lucie Poulet and colleagues from the University of Clermont-Ferrand, Auvergne outline in their review that while healthy plants can be grown in space, the long-term effects of the space environment on plant growth and reproduction are not yet well known.

Since the 1960s, experiments conducted in space stations and research rockets have shown that plants can grow normally in microgravity provided factors such as confinement, lack of ventilation and elevated radiation levels are taken into account. 

However, microgravity can reduce cell growth, alter gene expression and change the pattern of root growth – all aspects which critically affect plant cultivation in space.

Seeds produced in orbit also seem to have different composition and developmental stages from seeds grown on Earth.  As well as affecting the performance and nutritional content of space seeds, this could damage the flavour of plants produced in space, which might become a problem for crews reliant on plant-based diets during long space missions.

While there appears to be no major obstacle to plant growth in space, large-scale tests for food production in reduced gravity are still lacking, and a number of viable technologies for space agriculture need to be developed.

These include efficient watering and nutrient-delivery systems, precise atmospheric controls for temperature, humidity and air composition, and low-energy lighting which could include sun collection systems that take advantage of sunlight on the surface of planets and moons.

Selecting the right crops to grow in space is also essential.  Given the limited amount of room available on board a spacecraft, plants with reduced size but high yields need to be developed: for example, dwarf varieties of wheat, cherry tomato, rice, pepper, soybean and pea have been successfully grown in orbit and in simulated planetary habitats.

Poulet said: "Challenges remain in terms of nutrient delivery, lighting and ventilation, but also in the choice of plant species and traits to favour.  Additionally, significant effort must be made on mechanistic modelling of plant growth to reach a more thorough understanding of the intricate physical, biochemical and morphological phenomena involved if we are to accurately control and predict plant growth and development in a space environment."


Before commenting please read our rules for commenting on articles.

If you see a comment you find offensive, you can flag it as inappropriate. In the top right-hand corner of an individual comment, you will see 'flag as inappropriate'. Clicking this prompts us to review the comment. For further information see our rules for commenting on articles.

comments powered by Disqus

Read These Next

Eryngium

Eryngium

This florist's favourite offers interesting foliage and alluring flowers in a range of colours, writes Miranda Kimberley.

What's in store for ornamentals production in 2017?

What's in store for ornamentals production in 2017?

Rising overheads, exchange rates, export opportunities and labour restrictions.

IPM Essen show preview - Exports offer silver lining

IPM Essen show preview - Exports offer silver lining

UK exhibitors at this year's IPM nursery trade show in Germany will be looking to increase exports on the back of the Brexit vote, Matthew Appleby explains.


From The Editor - Prospects for the year ahead

From The Editor - Prospects for the year ahead

Making predictions about the future is a risky business in the best of times. Throw in a year when the UK is set to begin the formal process of leaving the EU and all bets are off. Despite this, the HW team has prepared our biggest-ever preview of the year ahead.

According To Edwards ... Why horticulture needs a different dialogue to farming

According To Edwards ... Why horticulture needs a different dialogue to farming

The Government will always look on "horticulture" as a sector within "agriculture" and, when the trade effectively gets its message across, the Government recognises "nursery stock" as a non-edible subset of horticulture.

Seabrook on...Are 'garden' and 'gardener' becoming dirty words?

Seabrook on...Are 'garden' and 'gardener' becoming dirty words?


Follow us on:
  • Facebook
  • LinkedIn
  • Twitter
  • Google +
Horticulture Jobs
More Horticulture Jobs

Pest & Disease Tracker bulletin 

The latest pest and disease alerts, how to treat them, plus EAMU updates, sent direct to your inbox.

Sign up here

Are you a landscape supplier?

Horticulture Week Landscape Project Leads

If so, you should be receiving our new service for Horticulture Week subscribers delivering landscape project leads from live, approved, planning applications across the UK.