Plants for Mars - scientists explore viability

Plants will play a critical role in the survival of human beings on long-duration space missions, such as a mission to Mars, a new paper has found.

But, as a paper published in Botany Letters shows, many challenges need to be addressed if astronauts are to successfully grow enough food on board spacecraft and on other planets.

Lucie Poulet and colleagues from the University of Clermont-Ferrand, Auvergne outline in their review that while healthy plants can be grown in space, the long-term effects of the space environment on plant growth and reproduction are not yet well known.

Since the 1960s, experiments conducted in space stations and research rockets have shown that plants can grow normally in microgravity provided factors such as confinement, lack of ventilation and elevated radiation levels are taken into account. 

However, microgravity can reduce cell growth, alter gene expression and change the pattern of root growth – all aspects which critically affect plant cultivation in space.

Seeds produced in orbit also seem to have different composition and developmental stages from seeds grown on Earth.  As well as affecting the performance and nutritional content of space seeds, this could damage the flavour of plants produced in space, which might become a problem for crews reliant on plant-based diets during long space missions.

While there appears to be no major obstacle to plant growth in space, large-scale tests for food production in reduced gravity are still lacking, and a number of viable technologies for space agriculture need to be developed.

These include efficient watering and nutrient-delivery systems, precise atmospheric controls for temperature, humidity and air composition, and low-energy lighting which could include sun collection systems that take advantage of sunlight on the surface of planets and moons.

Selecting the right crops to grow in space is also essential.  Given the limited amount of room available on board a spacecraft, plants with reduced size but high yields need to be developed: for example, dwarf varieties of wheat, cherry tomato, rice, pepper, soybean and pea have been successfully grown in orbit and in simulated planetary habitats.

Lucie Poulet said: "Challenges remain in terms of nutrient delivery, lighting and ventilation, but also in the choice of plant species and traits to favour.  Additionally, significant effort must be made on mechanistic modelling of plant growth to reach a more thorough understanding of the intricate physical, biochemical and morphological phenomena involved if we are to accurately control and predict plant growth and development in a space environment."

Plants will play a critical role in the survival of human beings on long-duration space missions, such as a mission to Mars.  However, as a paper published in Botany Letters shows, many challenges need to be addressed if astronauts are to successfully grow enough food on board spacecraft and on other planets.

Lucie Poulet and colleagues from the University of Clermont-Ferrand, Auvergne outline in their review that while healthy plants can be grown in space, the long-term effects of the space environment on plant growth and reproduction are not yet well known.

Since the 1960s, experiments conducted in space stations and research rockets have shown that plants can grow normally in microgravity provided factors such as confinement, lack of ventilation and elevated radiation levels are taken into account. 

However, microgravity can reduce cell growth, alter gene expression and change the pattern of root growth – all aspects which critically affect plant cultivation in space.

Seeds produced in orbit also seem to have different composition and developmental stages from seeds grown on Earth.  As well as affecting the performance and nutritional content of space seeds, this could damage the flavour of plants produced in space, which might become a problem for crews reliant on plant-based diets during long space missions.

While there appears to be no major obstacle to plant growth in space, large-scale tests for food production in reduced gravity are still lacking, and a number of viable technologies for space agriculture need to be developed.

These include efficient watering and nutrient-delivery systems, precise atmospheric controls for temperature, humidity and air composition, and low-energy lighting which could include sun collection systems that take advantage of sunlight on the surface of planets and moons.

Selecting the right crops to grow in space is also essential.  Given the limited amount of room available on board a spacecraft, plants with reduced size but high yields need to be developed: for example, dwarf varieties of wheat, cherry tomato, rice, pepper, soybean and pea have been successfully grown in orbit and in simulated planetary habitats.

Poulet said: "Challenges remain in terms of nutrient delivery, lighting and ventilation, but also in the choice of plant species and traits to favour.  Additionally, significant effort must be made on mechanistic modelling of plant growth to reach a more thorough understanding of the intricate physical, biochemical and morphological phenomena involved if we are to accurately control and predict plant growth and development in a space environment."


Before commenting please read our rules for commenting on articles.

If you see a comment you find offensive, you can flag it as inappropriate. In the top right-hand corner of an individual comment, you will see 'flag as inappropriate'. Clicking this prompts us to review the comment. For further information see our rules for commenting on articles.

comments powered by Disqus

Read These Next

Ceanothus

Ceanothus

These shrubs or small trees produce mainly blue flowers and fantastic glossy leaves, writes Miranda Kimberley.

Pest & Disease Factsheet - Moles

Pest & Disease Factsheet - Moles

Protect against root damage caused by tunnelling.

Nicotiana

Nicotiana

Very popular among experienced gardeners, these plants often give off a sweet fragrance, says Miranda Kimberley.


Production stars take innovation lead at UK Grower Awards and Garden Retail Awards

Production stars take innovation lead at UK Grower Awards and Garden Retail Awards

Over the past week it has been the great privilege of the Horticulture Week team to welcome more than 700 leading horticulture professionals to three great industry events - the Garden Retail Awards 2017, the UK Grower Awards 2017 and the third Garden Retail Summit, all hosted by Horticulture Week.

UK Grower Awards winners demonstrate exceptional talent

UK Grower Awards winners demonstrate exceptional talent

Welcome to this special presentation of the achievements of the outstanding winners of the UK Grower Awards 2017.

Opinion: Edwards On... Plant supply and health

Opinion: Edwards On... Plant supply and health

Increasingly, and rightly, plant health/biosecurity is being recognised as something of which all of us involved in plant supply must be aware.


Follow us on:
  • Facebook
  • LinkedIn
  • Twitter
  • Google +
Horticulture Jobs
More Horticulture Jobs

Pest & Disease Tracker bulletin 

The latest pest and disease alerts, how to treat them, plus EAMU updates, sent direct to your inbox.

Sign up here

Are you a landscape supplier?

Horticulture Week Landscape Project Leads

If so, you should be receiving our new service for Horticulture Week subscribers delivering landscape project leads from live, approved, planning applications across the UK.